Resonant Nanophotonics

Chairs

Riad rvb Riad Haidar,
ONERA (FR)
 
     
Nicolasbonod small

Nicolas Bonod,
Institut Fresnel (FR)

 
     
   

 

 

 

 

Synopsis

Nanophotonics aims at controlling light at nanometer scales. The design of nanostructures that can resonantly interact with light is of crucial importance to enhance light matter interactions and to control field distributi-ons at subwavelength scales. These novel nanostructures offer technical and technological solutions with high innovation potential. The TOM 5 will address both fundamental and application aspects of resonant photonics. Topics will cover quantum nano-optics, bio- and chemo- sensing, non-linear optics, metamaterials, optical
trapping, new plasmonic materials, theory and modal analysis, among others.

Topics

  • Quantum nano-optics & optical antennas 
  • (Quantum) nanophotonics with 2D materials (e.g., TMDCs) 
  • Metasurfaces for bio- and chemo-sensing applications 
  • Active and tunable optical metasurfaces 
  • Nonlinear optics in nanostructures and metasurfaces 
  • Meta-surfaces & applications 
  • New plasmonic surfaces 
  • Nanomanipulation with light, optical trapping 
  • Metasurfaces for energy applications 
  • Nonreciprocity, and time-modulated nanophotonic materials 
  • Transport in quasiperiodic and random photonic systems 
  • Theory and modelling for nanophotonics and metamaterials,topological non hermitian and non-reciprocal photonics, neuromorphic / deep-learning photonics

 

Program Committee